
RoboCup Jr. with LEGO Mindstorms

Henrik Hautop Lund Luigi Pagliarini

LEGO Lab LEGO Lab
University of Aarhus University of Aarhus

8200 Aarhus N, Denmark 8200 Aarhus N., Denmark
http://legolab.daimi.au.dk http://legolab.daimi.au.dk

Abstract

During RoboCup'99 in Stockholm, we arranged the

�rst RoboCup Jr. Here, the aim was to allow chil-

dren to get hands-on experience with robotics, and for

this purpose we set up a LEGO Mindstorms robot soc-

cer game for children. We developed the user-guided

behavior-based approach in order to allow non-expert

users to develop their own robots in an easy and fast

manner. Indeed, using this approach, children of the

age 7-14 were able to develop their own LEGO Mind-

storms robot soccer players to play in nice and friendly

tournaments with 60-90 minutes of development time!

In a user-guided behavior-based system, it is the sys-

tem developer who takes care of the diÆcult robotic

problems, while the end-user is working on a higher

abstraction level by making the coordination of prim-

itive behaviors. Further, for the LEGO Mindstorms

RoboCup Jr. game, we developed a �eld and a smart

ball (with IR emitters) which allowed easy navigation

and detection.

1 Introduction

During RoboCup'99 in Stockholm, we arranged the

�rst RoboCup Jr. A main part of the RoboCup

Jr. consisted of a robot soccer game with LEGO

Mindstorms robots which allowed children of the age

7-14 to develop their own robot soccer players to

play small tournaments within 60-90 minutes of de-

velopment time. There are many fundamental prob-

lems that have to be solved in order to make such a

robotic game available for children to develop and play

with. Among these and probably most fundamentally,

we �nd the problem of traditional programming lan-

guages demanding the learning of both syntax and

semantics of the programming language to be used

before the user can start to develop his/her own sys-

tem. Further, after �nally being able to develop the

system, traditionally the user has to go through a long

and tedious debugging phase before achieving the sys-

tem and performance in mind. Since robotic systems

often inherit their programming language from tra-

ditional computer systems, the robotic systems also

inherit the syntax & semantics knowledge and debug-

ging problem from the computer systems. Further,

the problem of having general users to develop their

own robotic systems is worsened by the integration

of hardware components such as sensors and motors,

since the control of these external devices traditionally

demands extensive engineering and control knowledge.

It is by no means an easy task to understand sensor

responses, sensor fusion, motor characteristics, envi-

ronmental noise, etc.

In this paper, we devise a new robot control method-

ology, user-guided behavior-based robotics, which aims

at avoiding the problems mentioned above and al-

lowing the general user (e.g. a child) with no previ-

ous robotics and programming knowledge to develop

his/her own robotic system in a very fast and reliable

manner. User-guided behavior-based robotics is based

on recent developments in behavior-based robotics,

and our general studies on using di�erent adaptive

robotic techniques (e.g. neural network controllers,

interactive evolutionary robotics, building brains and

bodies techniques, etc.) to construct new robot de-

velopment tools for non-expert users. We show the

feasibility, reliability and robustness of user-guided

behavior-based robotics with the RoboCup Jr. case

study, which showed how children of the age 7-14 were

able to develop their LEGO Mindstorms robot soccer

players to score goals and participate in friendly and

fun tournaments within 60-90 minutes. Already here

it must be noted that we can only describe the very

positive experiences, but yet have no statistical data

on the possible advantage of using our system though

http://legolab.daimi.au.dk/
http://legolab.daimi.au.dk/


we would have preferred to present such kind of data.

2 Behavior-Based Robotics

It is our hypothesis that adaptive robotic techniques

such as behavior-based systems, neural network con-

trollers, interactive evolutionary robotics, building

brains and bodies techniques, etc. are suitable tools

in trying to alleviate the problems involved when try-

ing to allow non-expert users to develop their own

robots. Here, we will concentrate on the use of

behavior-based systems. The �rst behavior-based sys-

tems were developed in the mid-80s by Rodney Brooks

[3] as a response to the arti�cial intelligence tradi-

tion of a hard division between hardware and soft-

ware development, and the sense-represent-plan-act

cycle that most arti�cial intelligence robotic systems

implemented. Brooks' behavior-based systems shifted

the emphasis from such a functional decomposition

to a behavioral decomposition. Both approaches use

the classical problem solving technique of divide-and-

conquer, but with the behavioral decomposition one

divides the problem into behavioral components that

all have access to sensors and actuators. From a theo-

retical point of view, this means that the behavior-

based approach promotes an explanation of intelli-

gence that relies on the interplay between the system

(animal, agent, robot, etc.) and the environment, and

the embodiment of the system. Hardware has inu-

ence on all levels and there is no possible abstraction

to a pure cognitive level (in contrast with the func-

tional decomposition).

The assumption of behavior-based systems is that

complex behaviors can emerge from the combination

of simple behaviors. In Brooks' original subsumption

architecture [3], he develops a layered structure that

allows the hand-coding of one level of competence after

another in an increasing order to achieve higher and

higher levels of competence. Both the layers of be-

haviors and the integration of the behaviors are hand-

coded by the developer.

During the following few years after Brooks' inven-

tion of the behavior-based approach, a number of re-

searchers like L. Steels [10], P. Maes [9], R. Arkin [1],

etc. developed di�erent architectures for the behavior-

based approach to robotics. The architectures use

di�erent representations and di�erent behavioral co-

ordination methods. In general, simple behaviors

are handcoded, and the behaviors are coordinated

through competitive methods (priority-based coordi-

nation, action-selection coordination, voting-based co-

ordination) or cooperative methods (vector summa-

tion), see e.g. [2].

In all the behavior-based approaches, the developer

of the system needs to have an extensive engineering

knowledge about the robot hardware and computer

programming knowledge in order to be able to design

the single behaviors and the coordination between the

behaviors. In a recent evolutionary behavior-based ap-

proach [4], we have tried to alleviate this problem by

allowing an evolutionary algorithm to �rst evolve the

single behaviors, and thereafter evolve the arbitration

between the simple behaviors. In this approach, the

user needs only make the task decomposition and de-

scribe �tness functions for each simple behavior and

each arbitration. But still this demands some a priori

robotic knowledge.

In general, the reliance on smart engineers and com-

puter scientists in the development of behavior-based

robotic systems might pose a problem in scaling up to

complex robot behaviors. However, as we will show

below, it is our belief that, with small manipulations,

the approach can be used to allow non-expert users to

develop their own robots in a fast and easy manner.

3 User-Guided Behavior-Based

Robotics

We [6] have previously explored how to convert adap-

tive robotics techniques into user-guided techniques,

in order to allow non-experts to develop robots. In

the previous case, we used evolutionary robotics and

turned it into a user-guided evolutionary robotics ap-

proach, in which the user is deciding which robots in a

population of robots should be allowed to reproduce.

Hence, instead of having to design a �tness function in

mathematical terms, the user is simply looking at the

robot performances and chooses which ones to repro-

duce. We [6] have previously shown how this approach

can be used to develop LEGO robots with simple be-

haviors, such as obstacle avoidance, line following, wall

following, etc.

Now, we wanted to go towards more complex and in-

teresting behaviors, such as robot soccer behaviors.

It was our idea to use a similar approach, but since

we had no record of such complex behaviors yet be-

ing developed with evolutionary robotic approaches,

we looked to another approach using behavior-based

robotics. This was partly because that in previous

evolvable behavior-based experiments [4] we found in-

dications of a possible future merging with the user-



guided evolutionary robotics approach would be fruit-

ful (in fact, this is now work in progress). Hence, we

wanted to develop a new kind of behavior-based sys-

tem, namely a user-guided behavior-based system.

In the user-guided behavior-based robotics approach,

the designer is developing the primitive behaviors,

which include all the low level processing and integra-

tion of sensors and motors. The end-user is making

the coordination of the primitive behaviors in order

to have the global robot behavior in mind to emerge.

Hence, the end-user is working on a high abstraction

level, and does not have to concentrate his/her e�orts

on e.g. how to integrate sensors, how to interpret ana-

logue values, how to send commands to the motors,

how to incorporate/interpret noise, etc. This is all

left to the designer of the system, who is hopefully a

professional (engineer, computer scientist, roboticist)

in this �eld, and therefore by profession is capable of

making a suitable design of primitive behaviors. In

the case of robot soccer, the end-user is working as

a coach, telling the robot soccer player what kind of

behaviors to perform - essentially like a coach would

tell the left wing soccer player to run back, get the

ball, run up along the left ank, and when reaching

the end line to pass the ball.

There is no need to have extensive a priori expert

knowledge about robotics when using the user-guided

behavior-based robotics system, since the complex

robotic problems are handled in the design of the sys-

tem by the system designer. However, there is still the

problem that the user has to understand what a spe-

ci�c, primitive robot behavior actually does. There-

fore, for the LEGO Mindstorms robot soccer game

for children, we provided video-sequences of all primi-

tive behaviors, so that the user (child) can watch each

primitive behavior and get an idea about what the

robot will actually do when performing a speci�c be-

havior. This has the further advantage that children

with poor (or no) reading capabilities are able to use

the system by watching the visualization and using

this when selecting primitive behaviors. Speci�cally,

in Stockholm we did not have the possibility to have

a Swedish translator all the time, so there were mi-

nor problems with the some of the children not under-

standing their coach well, but then they used the video

clips to better understand the di�erent, available com-

mands. Currently, the programming environment pro-

vides translation into English, Swedish, Danish, and

Italian.

In the LEGO Mindstorms robot soccer game for chil-

dren, we made a simple coordination mechanism avail-

able in the beginner's level, since we wanted all chil-

Figure 1: Video sequence of a primitive behavior. c

LEGO Lab 1999.

dren to be able to participate. The coordination mech-

anism is a simple selection of single primitive behav-

iors to be put in sequence. Hence, there is no sub-

sumption, voting, or similar in this case study. It

should be possible to implement such a more advanced

coordination mechanism, but, in this case, our �rst

concern was an easy system for children. So the chil-

dren select primitive behaviors to be put in a sequence

and this sequence is then looped over and over again

in the LEGO Mindstorms robot soccer player.

We provided a number of primitive behaviors to the

user. These include eyes behaviors, reaction to bump-

ing, going to speci�c regions of the �eld, turning and

moving forward, �nding the ball, circling the ball, go-

ing in speci�c directions on the �eld, etc. The whole

list of primitive behaviors is seen on the left side of

�gure 2, which is a screen dump of the programming

environment.

4 Robot and Environment Set-

up

There are numerous technical problems that have to

be solved before it is possible to make a RoboCup

Jr. tournament for children. Especially, it is impor-

tant that the robots and their interaction with the

environment are easy to understand. We chose to use

LEGO Mindstorms robots for the RoboCup Jr. tour-

naments during RoboCup'99, since these robots are

fairly simple and every child feels comfortable with

LEGO bricks. However, it is not trivial to make a

LEGO Mindstorms robot play a robot soccer game.



Figure 2: The programming environment. On the left is

displayed all the primitive behaviors that the user can se-

lect to put on the right side in the control program. To the

left of each primitive behavior is show a small video cam-

era icon. When clicking this icon, a small video sequence

will display the robot behavior. c LEGO Lab 1999.

For RoboCup'98, we developed a LEGO Mindstorms

robot soccer demonstration [7, 8, 5] based on the avail-

ability of an overhead camera and a hardware vision

system. Further, the huge set-up for RoboCup'98 in-

cluded a whole stadium made out of LEGO with small

cameras, rolling commercials, score board, spectators

that made the "wave", etc. But for the RoboCup Jr.

we found it essential to have a minimal set-up exclud-

ing things like overhead cameras in order to allow the

children to understand the set-up and the game.

For the RoboCup Jr., the soccer player is a LEGO

Mindstorms robot that has three light sensors and two

switch sensors. Two light sensors are used to detect

the ball, and one light sensor is used to detect the ap-

proximate position on the �eld. The switch sensors

are used to detect bumps into the walls or the oppo-

nent robot. The robot soccer player has two LEGO

motors that are connected to the wheels. The last out-

put channel of the LEGO Mindstorms RCX is used to

control the movements of the robot's eyes. Giving the

robot eyes (or, in general, facial expression) seems to

provide more a�ection from the children towards their

robot soccer player, so this is another important as-

pect to investigate when making a robot soccer play

for young children. In general, in the LEGO Lab we

view it as important to move towards a better human-

robot interface, and this seems to be facilitated with

e.g. robot facial expressions.

In order to facilitate easy navigation with simple sen-

Figure 3: One of the LEGO Mindstorms robots used for

the RoboCup Jr. set-up. c P. Petrovic 1999.

sors (such as a light sensor), we made a special �eld

for the RoboCup Jr. The �eld for LEGO Mindstorms

RoboCup Jr. is a grayscale surface printed on an over-

size A0. It is simply a gradient from black to white,

and using a LEGO light sensor underneath the robot

one can navigate around the �eld and e.g. �nd the

goal of the opponent. The navigation on such a sur-

face is very robust with the LEGO Mindstorms robot

soccer player. But again, this kind of sensor inter-

pretation and processing is done by the developer of

the user-guided behavior-based system and kept hid-

den from the end-user. The end-user does not need to

know what kind of processing is taking place within

the primitive behaviors, and therefore does not need

to be a professional roboticist.

The detection of a ball can also be quite diÆcult when

using nothing else than two simple LEGO Mindstorms

light sensors. The LEGO Mindstorms light sensors

emit IR light and have an IR detector, so they can

be used to distinguish colours at a very short distance

(e.g. 0-5mm.), but are not well suited for detecting

objects at longer distances. However, clever engineer-

ing can alleviate this problem. If one emits IR signals

of the same wavelength as the one detected with the

detector in the LEGO Mindstorms light sensor, then

it is possible to sense such signals over a fairly long

distance. But IR emitters often emit with a small

spreading angle, so more than one IR emitter might

be necessary in order to cover the surface of an ob-

ject. In our case, we designed a ball out of transparent

plastic, and planted 20 IR emitters inside the ball at

positions so that we ensured coverage of all angles. In

order to be able to emit stronger IR signals, we made



a small pulse circuit that pulses the IR emitters at

a high frequency. The ball draws its current from 4

rechargeable batteries placed inside the ball, and some

small weights are carefully positioned within the ball

in order to balance the ball.

Figure 4: The smart ball developed for the LEGO Mind-

storms RoboCup Jr.'99. c LEGO Lab 1999.

Finally, we had to solve the problem of recharging

the batteries inside the ball. This is done by using

the screws that holds the transparent plastic ball to-

gether. The batteries are placed around these two

screws, so we built a LEGO recharger (see �gure 5)

that charges the batteries through the screws when

the ball is placed in the LEGO recharger.

Figure 5: The LEGO ball recharger. c P. Petrovic 1999.

With fully charged batteries, the ball can be detected

by the LEGO Mindstorms light sensors at approxi-

mately 2 meters distance. However, since the signal

from the ball is pulsed and the LEGO Mindstorms

light sensors are reading at a higher frequency (every

3 ms), the robot might read the light sensor when the

emitter pointing towards the robot is not turned on.

Hence, one needs to integrate over e.g. 3 readings. But

again, this is a thing that is left for the designer of the

system to �gure out, and not a job for the end-user.

The end-user is simply using primitive behaviors such

as Find Ball, Search and Go Ball, Circle Ball, etc.

5 RoboCup Jr. Experience

Each day in Stockholm during RoboCup'99, children

between 7 and 14 years of age were divided into groups

of 2-4 children in each group. Each group was given

a pre-made LEGO Mindstorms robot, as described

above. Each group of children had a coach, who would

give the children a brief (e.g. 10 minutes) introduc-

tion to the game, the robot, and the programming

environment. Afterwards, the children started to pro-

gram their robots with the user-guided behavior-based

system for the robot soccer game. Especially, most

groups would start by looking at the video sequences

to understand the meaning of the available primitive

behaviors. Afterwards, they would normally start

a cycle of making small programs, downloading and

testing the robot behavior, and re�ning the program.

Within 20 minutes or so the children were able to score

their �rst goal with the robot. In order to keep the at-

tention of the children, such a fast success experience

seems to be crucial. The new and easy robot program-

ming language is essential for the success. Here, the

children are not concerned with the design of primi-

tive behaviors, but only with the combination of the

primitive behaviors. They work on a higher level and

design the soccer strategy of the single player, rather

than design the low levels of competence such as vi-

sion processing, sending messages to motors, etc. This

means that even very young children can understand

and enjoy this robot soccer game.

All days of the RoboCup Jr. event, after 90-120 min-

utes of development, we had very nice, friendly com-

petitions ... more in the spirit of participating, rather

than winning, though some children were very keen

of making the perfect robot to perform well in the

games. The �rst day, the �nal ended 4-2, the next

day it ended 10-7, and the �nal day it ended 2-1. Ap-

proximately the same amounts of goals were scored

in the quali�cation matches, so the children de�nitely

managed to make goal-scoring robots with the user-

guided behavior-based system.

It is interesting to notice that the participating girls

were at least as enthusiastic about the game as the

boys, even though we played the (normally) male dom-

inated game of soccer. We were happy to notice this,



since it is important to reach the girls and �nd ways

to transfer technology knowledge and enthusiasm to

girls as well as boys.

Unfortunately, we do not have any statistical mea-

surements to compare this approach with other ap-

proaches, but we were de�nitely surprised by the chil-

dren's ease and enthusiasm of using the system. See-

ing children down to the age of 7 develop their own

robot soccer players with 60-90 minutes gives us in-

formal evidence that the user-guided behavior-based

system facilitate the development of robots by non-

expert users. The feedback from the users also veri�es

this:

Oksana and myself de�nitely had a great time and en-

joyed the game very much! (which is very surprising

because I do not like soccer as a game and has never

been interested in it. However, the lego robot soccer

tournament gave me with a di�erent experience.) It

is a good fun to program a robot and the program is

indeed easy to use.

In the whole it was a great experience and we enjoyed

it very much. Robots are our future and it is very

exciting to see the �rst steps in robots development.

Also it is very important to get children interested and

involved in the process - and you were absolutely suc-

cessful in this task. Thank you for giving children a

chance to try.

11/8/1999, Elena Prokopenko (Australia), mother of

Oksana

6 Conclusion

It seems evident that the problem of learning both syn-

tax and semantics of a traditional programming lan-

guage has to be solved if robot development is to be

given free to non-experts. Especially, this is the case

when fast development is desirable. For this purpose,

we have developed the user-guided behavior-based sys-

tem and tested this system with the RoboCup Jr. set-

up. The user-guided behavior-based system allows the

user to make coordination of primitive behaviors de-

signed a priori by the system developer. Hence, the

user works on a high abstraction level, while it is the

system developer (e.g. engineer, computer scientist,

roboticist) who is designing the low level behaviors

which include the diÆcult parts of communication

to sensors and motors, sensor pre-processing, noise-

interpretation, etc.

The RoboCup Jr. experience tells us that the user-

guided behavior-based system allows the users (chil-

dren of age 7-14) with no previous robotics experience

to develop their own robots in a very fast manner. In-

deed, the children are able to develop very complex

robot behaviors such as the di�erent robot soccer be-

haviors. However, it must be noted that the user-

guided behavior-based system is by no means limited

to a robot soccer game or a tournament set-up. Here,

we simply used RoboCup Jr. as a case study. In

future, we will explore the development of other com-

plex robot behaviors by non-expert users using the

user-guided behavior-based approach.

References

[1] R. Arkin. Motor Schema-Based Mobile Robot Nav-

igation. International Journal of Robotics Research,

8(4):92{112, 1989.

[2] R. C. Arkin. Behavior-Based Robotics. MIT Press,

Cambridge, MA, 1998.

[3] R. A. Brooks. A robust layered control system for

a mobile robot. IEEE J. Robotics and Automation,

RA-2(1), 1986.

[4] W.-P. Lee, J. Hallam, and H. H. Lund. Learning Com-

plex Robot Behaviors by Evolutionary Approach. In

A. Birk and J. Demiris, editors, Proceedings of 6th

European Workshop on Learning Robots, LNAI 1545,

Heidelberg, 1997. Springer Verlag.

[5] H. H. Lund, J. A. Arendt, J. Fredslund, and

L. Pagliarini. Ola: What Goes Up, Must Fall Down.

Arti�cial Life and Robotics, 4, 1999.

[6] H. H. Lund, O. Miglino, L. Pagliarini, A. Billard, and

A. Ijspeert. Evolutionary Robotics | A Children's

Game. In Proceedings of IEEE Fifth International

Conference on Evolutionary Computation, pages 154{

158, NJ, 1998. IEEE Press.

[7] H. H. Lund and L. Pagliarini. LEGO Mindstorms

Robot Soccer. A Distributed Behaviour-Based Sys-

tem. 1999. To be submitted.

[8] H. H. Lund and L. Pagliarini. Robot Soccer with

LEGO Mindstorms. In M. Asada and H. Kitano, edi-

tors, RoboCup-98: Robot Soccer World Cup II, LNAI

1604, Heidelberg, 1999. Springer Verlag.

[9] P. Maes. Situated agents can have goals. In P. Maes,

editor, Designing Autonomous Agents, Cambridge,

MA, 1990. MIT Press.

[10] L. Steels. Towards a theory of emergent function-

ality. In J. Meyer and S. W. Wilson, editors, From

Animals to Animats: Proceedings of the First Interna-

tional Conference on Simulation of Adaptive Behavior

(SAB90), Cambridge, MA, 1991. MIT Press.




