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Abstract Arti�cial life might come to play important roles for the World

Wide Web, both as a source of new algorithmic paradigms and as a source

of inspiration for its future development. New Web searching and manag-

ing techniques, based on arti�cial life principles, have been elicited by the

striking similarities between the Web and natural environments. New Web

interface designs, based on arti�cial life techniques, have resulted in increased

aesthetic appeal, smart animations, and clever interactive rules. In this pa-

per we exemplify these observations by surveying a number of meeting points

between arti�cial life and the Web. We touch on a few implementation issues

and attempt to draw some lessons to be learned from these early experiences.

1 Introduction

In recent years, the Internet and its hypertextual and graphical World Wide Web

subset have developed very rapidly. Even though new techniques | based on

human-computer interaction, information retrieval, and network routing method-

ologies | have been applied to a range of Web problems, the emergence of suitable

Web techniques has not been as rapid as the growth in size and complexity of the

Web.

Can the �eld of arti�cial life (ALife) provide the growing Web community with

useful inspiration? What new paradigms, methodologies, and algorithms does ALife

o�er? Is the Web a suitable arti�cial environment to foster new, useful arti�cial

life forms? Should we bother to embark on the enterprise of populating the Web

with intelligent, interactive, autonomous agents with life-like behaviors? These are

important questions that deserve the attention of the ALife community. To stimulate

this discussion, we start in this paper with a survey of some projects in which ALife

has already, to variable degrees, met the Web.

We will focus on some Web-related issues where ALife, in our opinion, may

come to play a positive role. These issues include aspects of distributed information

search and management, such as scaling and user-adaptability (described in the

Applications to Web Search and Management section); and aspects of Web inter-

face design,such as aesthetic appeal, animation, and interactivity (surveyed in the

Applications to Web Interface Design section). Throughout the paper, we discuss

some lessons learned through these early experiences.



2 Applications to Web Search and Management

One of the central goals of ALife, in our opinion, is to apply algorithms inspired

by natural systems to practical applications. The applications that best lend them-

selves to ALife approaches are those whose operating environments share important

characteristics with natural environments. With the explosion of the Internet, it

would have been di�cult not to notice the striking similarities between this arti�-

cial environment and those in which real creatures evolve, adapt, strive, compete,

collaborate, learn, grow, reproduce, and die. Like natural environments, the Web is

very large; it is dynamic, with documents being added, removed, and moved all the

time; it is heterogeneous | even considering text alone | with context-dependent

languages, formats, and styles; it is noisy, with lots of irrelevant, outdated, or in-

correct information; and it is distributed, so that actions have costs (for example

the network latency associated with accessing a certain page).

Innumerable paradigms have been brought fourth to tame the Web into �tting

some pattern familiar to users. Even the emerging �eld of autonomous software

agents owes much of its success to the ready availability of virtually in�nite infor-

mation environments, and the di�culties encountered by users attempting to cope

with such environments. The InfoSpiders project was born as an exploration of the

possible matches between some of the features that make the Web a complex envi-

ronment, and some of the mechanisms that allow ecologies of organisms to adapt

to di�erent | but at least equally complex | natural environments.

In particular, the large, dynamic, and distributed avor of the Web leads to scal-

ing problems when traditional information retrieval methods are employed to build

search engines. Information often becomes stale before a search engine's database

can be updated. The heterogeneous organization of information makes any single,

global exploration strategy less than optimal | no matter how clever. What can

nature teach us about ways to complement these methods with less traditional ap-

proaches? In nature, no single species is \optimal" with respect to the whole world;

each is adapted to some niche in which members of that species have evolved. Popu-

lations of situated, mobile agents a�ord decisions based on local context, continuous

adaptation, and robustness | in natural and arti�cial environments alike. Di�er-

ent subpopulations can specialize in dealing with the peculiar characteristics of the

local environments they experience.

2.1 InfoSpiders

The aim of the InfoSpiders system is to apply and test several machine learning

techniques, inspired by natural adaptation, for problems posed by searching and

managing information on the Web. Di�erent methods have been explored, extended,

and integrated for this task. In the project, we experimented with versions of the

genetic algorithm employing localized selection schemes, to overcome the problem

of premature convergence and allow for distributed implementations; with di�erent

agent representations, to enable agents to internalize local textual features into

their evolving behaviors; with reinforcement learning, to adapt individual strategies

over short-term time and space scales, based on local context; and with relevance

feedback, to permit the user to bias the search process, seamlessly and on-line, based

on previous and current performance.

A detailed description of the implementation of the InfoSpiders system is out of

the scope of this paper. Interested readers can �nd such details, as well as reports on

preliminary experiments, elsewhere [14{16] or on-line [1]. Here we limit ourselves to

outline the general ideas behind the model. The �rst step is to identify the crucial

resource, the \food" of the arti�cial environment. For the task at hand, it is easy

to equate resources with relevant information. Since relevance is subjective (actual



relevance depends on the user, and must be estimated by agents), information must

be transformed into a higher-entropy quantity; this single currency by which agents

in a population survive, reproduce, and die is called \energy." Energy must be

positively correlated with performance as de�ned by user and environment.

Agents asynchronously go through a simple cycle in which they receive input

from the environment as well as internal state, perform some computation, and

execute actions. Actions have an energy cost but may result in energy intake. En-

ergy is used up and accumulated internally throughout an agent's life; its internal

level automatically determines reproduction and death, events in which energy is

conserved. Agents that perform the task better than average reproduce more and

colonize the population. Indirect interaction among agents occurs without the need

of expensive communication, via competition for the shared, �nite environmental

resources. Mutations and crossover a�ord the changes necessary for the evolution of

dynamically adapted agents. This paradigm enforces density-dependent selection:

the expected population size is determined by the carrying capacity of the environ-

ment. Associating high energy costs with expensive actions intrinsically enforces a

balanced network load by limiting ine�cient uses of bandwidth.

Collective Behavior Adaptation means for agents to concentrate in high energy

areas of the Web, where many documents are relevant. Each agent's survival will

be ensured by exchanging an adequate ow of information for energy. The situation

is illustrated by the snapshots in Figure 1, illustrating a typical collective behavior

of InfoSpiders in response to a query, and limited to a well de�ned chunk of the

Web. After a while, blue agents have found what the user wanted; they prosper and

multiply in this relevant niche, while other agents continue to explore the world in

search of alternatives.

Search E�ciency One of the central results of the InfoSpiders project is to have

shown that it is useful for information search algorithms to view the Web as a \nat-

ural" environment and characterize it in such terms. What are the environmental

assets from a learning agent's perspective? Statistical features such as word frequen-

cies are of course crucial dimensions. It has been argued that the \link topology"

structure imposed by information providers upon the organization of documents is

another important resource. Even in unstructured information environments, au-

thors tend to cluster documents about related topics by letting them point to each

other. This creates a landscape that agents can explore making use of correlation

of relevance across links.

Preliminary results, based on theoretical analysis, simulations, and actual ex-

periments on Web-based corpora, are very encouraging [14]. It has been shown that

link topology can indeed be detected and exploited by distributed agents, outper-

forming exhaustive search by an order of magnitude. Moreover, the synergy between

evolution, learning, and relevance feedback induces an additional, four-fold boost in

performance [15].

3 Applications to Web Interface Design

Web Interface Design (WID) is drastically changing in its aspect and functionality.

Yet it is unclear in what direction it is moving. There are at least three quality

factors in WID: (a) clever interactive rules; (b) smart animation; and (c) aesthetic

appeal.1 Until recently, WID interactivity and smart animation, handmade or aided

1 Here we will not take into account other important, but secondary factors, such as

user-oriented interface personalization, interface legibility, multilevel functionality, etc.



Figure1. Snapshots of InfoSpiders searching the EB Web space for documents relevant to

the query \Laws governing relations among sovereign states." The document's ontology

is represented with more speci�c topics farther from the center of the circle, and actual

articles outside of the circle. The relevant documents are represented by the yellow area,

unbeknownst to the agents. A document is marked with a rectangle if it is estimated as

relevant by the �rst agent visiting it. The color of an agent represents its lineage, so that all

agents sharing a color descend from the same ancestor. (EB data is c1997 Encyclopaedia

Britannica, Inc. [2]; the visual representation is the author's.)



by arti�cial intelligence techniques, relied only on animators' or programmers' abili-

ties; and the aesthetic appeal of a WID relied uniquely on graphic designers abilities.

However, since users want to get out of this unexciting landscape, there is a demand

for more appealing or artistic aesthetics, much smarter | if not life-like | anima-

tions, and more clever | if not human-like | interactions. ALife techniques appear

among the earliest and most plausible candidates to address some of these needs.

Indeed, in the remainder of this section we show some examples in which ALife

helps us to ful�ll these needs by providing for new ways to interact (a), by making

animations richer and more \natural" (b), and by extending the human capabilities

to build aesthetic artifacts (c).

3.1 Web Interactive Cellular Automata

WICA stands for \Web Interactive Cellular Automata." It is a Game of Life [13]

(or any other) cellular automaton [20] that is controlled by free owing text on an

HTML page. The free owing text is some active text that, when clicked, dynami-

cally changes the state of the cellular automata. It was initially created to support

Web-design and provide pleasing, changing and unpredictable animations for Web

page logos. It was then extended to support dynamic computer art and other kinds

of applications. Some examples of WICA can be seen on the WICA homepage [3].

Animation seems to be almost a requirement in the current fashion of Web pages;

something must always move. If the page is \static," it becomes boring. Therefore

we see a lot of animations on the net. Most of them are GIF animations, and the

others are usually simple Java animations. GIF animations are not very pleasing:

monotonous, nagging, tiresome | sometime irritating! Java animations are just a

little better. The endless repetition of exactly the same patterns is hardly inviting.

WICA animations are di�erent. Although they can be used for the same purpose as

GIF animations (e.g., animated logos), they are far from monotonous. Their ALife

avor makes them always unpredictable, conveying a feeling of life.

A WICA-based Homepage As an example, consider a WICA dynamic website

logo shown in Figure 2. This usage of WICA was implemented in the homepage of

Prof. Domenico Parisi of CNR [4]. Two CA's of di�erent colors are superimposed on

the page logo, and a new pattern is released into one of them each time another page

is selected by clicking a hypertext link. Since the CA applet resides on a separate

HTML frame, it is always visible, even when other frames are changed. Although

the CA is played over the logo, the logo remains clear and is not hidden by it. The

resulting animation is much more interesting, unpredictable, and \alive" than any

animated GIF or pre-designed animation can be. We attribute this e�ect to the use

of ALife techniques.

Figure2. The WICA dynamic website logo.

The speci�c WICA implementation was made so that the cellular automaton

applet uses Conway's classic Game of Life rules. However, the CA world (imple-



mented here as an arbitrary background picture) is shared by two parallel, inde-

pendent, overlapping CA's. It is an interactive applet, where control is achieved

through clicking on textual links rather than by the orthodox use of buttons and

menus. The actual dimensions of the CA grid are arbitrary, but since WICA usually

goes with a picture background, the size is dictated by the picture.

The CA algorithm implements three methods for making its calculations e�ciently:2

1. While the current generation is displayed on the screen, the next generation is

prepared on an o�-screen bu�er, and then replaces the current screen in a single

step.

2. Only cells that changed their status are re-painted.

3. When calculating the number of live neighbors of each cell, knowledge from

previous cell calculations is used: e.g., since the left column of the current cell is

the middle column of the previous cell, the status of the left neighbors is known

and need not be recalculated.

The dynamic character of WICA is based on two parallel, independent CAs

playing simultaneously in the same world. The CA world is controlled by Javascript

statements that activate a Java routine. When this routine is activated, a new

pattern of cells is inserted into one of the CAs. The CA that receives the patterns

is selected at random. Also selected at random are three parameters of the new

pattern: the pattern itself, its color, and its location within the CA frame. The

pattern itself is selected from a list of three interesting and well-known unstable

patterns: the R-Pentomino, the H-Heptomino and the Pi-Heptomino. The color is

selected at random from a list de�ned in the HTML �le.

This implementation results in having exactly two colors (and two populations)

at any given moment, but the colors may change giving the illusion of seeing new

populations. It also gives a somewhat unexpected behavior, as one of the CA pop-

ulations suddenly changes color and takes a new pattern.

Text Oriented Interactivity WICA animations can be integrated with a Text

Oriented Interface (TOI) [17] so that they always renew themselves. JcaToi [6],

shown in Figure 3, is such an extension of WICA and another example of value-

added communication. JcaToi provides the user with an interactive Game of Life

implementation that is controlled by free-owing text. WICA was designed to react

in parallel to regular HTML hypertext events, being a sort of by-product to regular

Web page requests, and always producing the same (albeit unpredictable) behavior,

namely adding a new CA pattern to the CA world. JcaToi, on the other hand, is

designed to perform various prede�ned actions. In JcaToi, various hyperlinks mean

di�erent things and perform di�erent dedicated actions. This is done by using a more

diverse Java-Javascript interface, where multiple Java routines can be activated by

the Javascript commands.

JcaToi makes use of three tools: HTML frames, Java, and Javascript. HTML

frames are used for creating pages where one part of the page (the program or the

picture) is static and constantly displayed in a prede�ned location, while the rest

of the page can be scrolled or change content. This makes the size of the \user

interface" practically unlimited. Java is used for the program itself, Javascript for

manipulating the hypertext links, and the Java-Javascript interface is used to allow

the text to control the program.

The text describes the CA applet that is displayed on the HTML page, and

allows the browsing user to play and learn with it, by clicking on the appropriate

words. The JcaToi application thus demonstrates that ALife techniques can add

2 The basic algorithm is due to Andreas Ehrencrona [5].



Figure3. The JcaToi website.

educational value to the Web, by making reading an interactive and \alive" process.

For example, you can imagine an Arti�cial Life Interactive Handbook where, by

using this technique, you can actually transform your reading into an active process.

An example would be: if you do not know what a 'hidden unit' in a neural network

is, you just click on the 'hidden unit' text and you see that the corresponding part

of the neural network picture is ashing. That is what we mean by reading as an

interactive process. Of course, this is the most static part of it. You can also think

of 'introducing food' free owing text into a running simulation, etc.

3.2 Flocking Web Creatures

Floys [7] are another example in which ALife issues cross over with Web interface

issues. Floys (shown in Figure 4) belong to the ocking ALife creatures variety [19],

sharing with them the social tendency to stick together, and the life-like emergent

behavior which is based on a few simple, local rules. They di�er from most other

ALife ocking (boids-type) implementations by being territorial animats that de-

fend their territory against intruders. In the WID system they are implemented as

Java applets. The more advanced applets allow individual Floys to change traits

and personality (iFloys and eFloys), and population of Floys to breed and evolve

(eFloys). One can observe various applications of this technique. The boids-based

algorithm has been used in the entertainment industry (e.g., in the \Jurassic Park"

movie for animating a storm of prehistoric birds). For an example of its application

to WID, see [8]. Animation realized with this kind of technique is more life-like,

visually pleasing, and smarter than traditional Web animation techniques; it is also

easy to realize | once one has learned to program the boids or simply use their

applet.

Before further discussing Floys' implications for WID, let us go over a few details

about their implementation. In general, the Floys behavior is governed by two rules:

{ a rule specifying how to relate to one's own kind;
{ a rule specifying how to relate to strangers.

Unlike most other ocking algorithms, a Floy does not relate to all members of its

community, but only to its two closest neighbors. This idea was borrowed from Alex

Vulliamy's Flies code [9], of which Floys is a descendant. Each Floy is \emotionally"

attached to two other members (its neighbors) of the ock, and tries to stay close

to them.3 The Floy relates to the neighboring Floys by identifying whether they are

3 An approximate neighbor detection algorithm is used for e�ciency, which is of course a

crucial aspect in Web design.



Figure4. The Floys website.

of its own kind or strangers. It will chase a stranger away while in its own territory,

or ee if chased by a stranger while outside of its own territory.

In the basic Floys applet, behavior parameters are common to the whole pop-

ulation. In iFloys, instead, each Floy can be assigned di�erent traits. Among the

parameters that can be assigned, we �nd acceleration, adhesion, collision distance

and maximum speed. For example, an iFloy with higher acceleration and speed

traits will tend to be faster, more abrupt, and will appear more nervous, spon-

taneous and individualistic; a Floy with higher adhesion value will tend to cling

more to the community and will look like a conformist. When one iFloy is assigned

high speed or acceleration traits, the whole group becomes a little confused and

disorganized. An iFloy with slow and lazy traits will be left behind. Color codes for

stranger vs. local Floys. Local iFloys have the aggressive behavior, while non-local

iFloys have the ight behavior. When iFloys are transformed to the stranger color,

they are attacked, even if they are the majority. However, when many strangers are

present, the local iFloys appear confused and do not �ght them e�ectively.

The most advanced of the three versions is the eFloys applet, which supports

evolution. This setup allows manipulation of more than 30 di�erent parameters. In

addition, several pre-de�ned behavior styles can be assigned to the current popula-

tion. The applet also supports the option of attaching a number graphically to each

Floy in order to track individual Floys easily. Although applets do not support �le

access for security reasons, current status and results can always be displayed in a

dedicated information screen. Where non-evolving Floys live eternally (or until their

energy drops to zero), eFloys live one generation, and a generation ends when the

stranger is �nally killed. eFloys evolve sexually, where each eFloy is the descendent

of two parents. The two parents are selected according to two �tness attributes,

energy and safety. An eFloy can gain or lose these during its lifetime, and the more

it has, the �tter it is. Energy is lost proportionally to speed, and safety is gained

from proximity to neighbors. With this set-up, one can easily make experiments

with populations of eFloys having prede�ned behaviors, or perform simulations of

the evolutionary process tuning the relative weights of safety and energy in the

�tness function.

3.3 Interactive Computer Art

Floys have exempli�ed how ALife models can be implemented to run across the

Web. But do such systems a�ord anything useful from a WID point of view? A

positive answer may be obtained by considering interactive computer art, where



the user interacts with graphical objects rather than code. The Arti�cial Painter

program [18, 21, 10] is one of several applications of ALife to computer graphic

design. It is based on arti�cial neural networks and evolutionary algorithms. At the

beginning of each evolutionary session it generates 16 random images which are a

sort of \seed-images" for the painter to start its work. The user can select four of

them as parents, which then produce sixteen new individuals constituting a new

generation. The user can zoom out each of the images, carefully look at them, and

observe changes, trends, and interactions in composition, color, texture, form, and

perspective. The only parameter the user can control at each generation is mutation

rate (which however can be assigned di�erently for each generation).

Figure5. The Alife Alive Art website.

Applications of this program can be seen in Vedran Vucic's homepage [11] and

the Alife Alive Art site [12] shown in Figure 5. These sites demonstrate a couple

of points. First, ALife techniques can be applied to graphic design and therefore to

WID, as in the case of Vedran Vucic's site. Second, the user can interact with and

inuence a picture by controlling its ALife-based evolution. The Alife Alive Art site,

derived from the Arti�cial Painter and Floys, allows the user to do so by interacting

with the text that is attached to, and part of, the picture.

4 Conclusion

The projects surveyed in this paper o�er a chance to highlight some of the meeting

points between ALife and the Web. As we have been showing all along the paper,

one can see the web as an enviroment where arti�cial creatures made up with ALife

techniques can move. We also showed that one can imagine these creatures to be

very di�erent agents with very di�erent function and properties.

Firstly, as shown by the InfoSpiders, the Web is a fertile ground to apply and

explore ALife-inspired algorithms. As electronic information environments grow and

become more complex, while the class of Web users extends from computer experts

to elementary school students, the need for \soft" computing technologies can only

become more stringent in our view. The more the Web looks like a natural, live

environment, the more we must look at real, living systems for humbling inspiration.

This also seems to be the case for WID: we have found ALife techniques (in-

spired by living systems) to provide a number of suitable tools that might facilitate

the design of pleasing Web interfaces. We have shown examples of uses of such



techniques to achieve appealing aesthetic (as in the Alife Alive Art site and Vedran

Vucic's homepage), smart animations (as in the WICA and Floys sites), and clever

interactive rules (as in the JcaToi demonstration).

Finally, one can also view the Web as a shared testing ground for ALife models,

as exempli�ed in the Floys system. The premise of the scienti�c method is the

reproducibility of experiments. ALife techniques and simulators are often di�cult

to compare due to the fact that each de�nes a di�erent class of environments.

The Web provides ALife practitioners with a global laboratory in which they can

examine their theories and do good science.

So, facing such problems as the synthesis of virtual worlds on the web it seems

necessary to take into account those kind of approaches we have shown. The most

important lesson learned is: think of the web as a natural enviroment where to

place organisms and by doing that one quickly realizes that ALife techniques, at

the moment, are the most �t ones for the realization of bio-like worlds.
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